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Square

Just generate all permutations of [1, 2, 3, 4, 5, 6, 7, 8, 9] and for each of the check
that the sums are all 15. If you used the internet to solve it, shame on you!

Sum

This is a classic subset-sum problem and is indeed NP-complete. It can be
solved with Dynamic Programming in O(n · t) where n is the number of integers
in the set and t is the target sum. However the constraints don’t allow such a
solution.

However the constraint

si > s1 + s2 + . . . + si−1

makes the problem much easier.
Suppose that si ≤ t and si+1 > t. If you don’t choose si then you will choose a
subset of {s1, s2, . . . , si−1} but this subset must have a sum at most s1 + s2 +
. . . + si−1. But

s1 + s2 + . . . + si−1 < si ≤ t

So you will never be able to reach t. Hence you always have to take such si.
You subtract it from t and continue. If at the end t = 0 the answer is yes.

Bins

Apparently this is just a greedy problem. But I did not see it when I set the
problem. It was supposed to be harder than that... Anyway. Here is the
indented solution:
Let bi be the number of tickets initially on the i-th bin and xi be the number
of tickets we put on bin i.

First observe that if some bi = 0 then we win a prize with probability 1 as
long as we have at least one ticket. If we have 0 tickets then the probability of
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winning at least one prize is 0.

We can treat these special cases apart and assume from now one that bi > 0 for
all i. Then the probability that we fail to gain the i-th prize is:

bi
bi + xi

.

Therefore, the probability of failing to gain all the prizes is

n∏
i=1

bi
bi + xi

.

Hence the probability of gaining at least one prize is:

1−
n∏

i=1

bi
bi + xi

.

Define

dp[i][j] = to be the minimum probability of failing to gain a prize if we

consider only bins 0, 1, . . . , i and having j tickets to spend.

Clearly dp[i][0] = 1 because we have no tickets to spend. Also, dp[0][j] = b0
b0+j

since, as there is only one bin, we just put all our tickets into it. Now, in general,
we can write

dp[i][j] = min
x=0,1,...,j

dp[i− 1][j − x] · bi
bi + x

.

Computing this in O(n · k2) is straightforward.
We can accelerate it to O(log(n) ·k2) by sorting the bins so that b0 ≤ b1 ≤ . . . ≤
bn−1.

Observe that in this case a solution is such that x0 ≤ x1 ≤ . . . ≤ xn−1.
In particular, if there are i bins and we have j tickets we will put at most j/i
tickets on the last bin.
Hence we can write:

dp[i][j] = min
x=0,1,...,i/j

dp[i− 1][j − x] · bi
bi + x

.

Computing this is O(n·k+log(n)·k2) because 1/1+1/2+. . .+1/n = O(log(n)).
There are other optimizations you can do. You can just consider the best k bins
and this gets you a solution that is O(k3).

Cubes

We can flatten the cube and index the sides as in the picture:
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0
back

1
left

2
bottom

3
right

4
front

5
top

Consider a 3× 3× 3 cube. If we cut it into 27 1× 1× 1 cubes, there are most
three sides with their color preserved depending on the one that is selected. The
following picture describes, for each of the 27 cubes, which side have their color
preserved (the gray faces are preserved). The cubes are show from the bottom
layer to the top layer, back to front and left to right.

bottom layer

middle layer

top layer

bottom layer

middle layer

top layer

To solve this problem, think about what happens after the k-th cut. Let the
colors in the given cube be c1 < c2 < . . . < cn. The faces with a color smaller
that ck need to be preserved (needs to be gray on the pattern). The face with
color ck needs to be changed (need to be white on the pattern). We don’t care
about what happens to the other faces because the will be replaced later by
another color later. Hence we need to check that at each step there is one of
the 27 patterns that does this.

For example, suppose the cube we are given is [5, 5, 5, 1, 2, 3] (note that there is
not face of color 4 but that does not matter):

5
5 5 1

2
3

For the first color there is nothing to check because we start by painting all cells
in blue so it is obviously possible to have the right cell in blue at the end. So
we start with:

1
1 1 1

1
1
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Now we look at color 2, green. We need a pattern that erases (e) the blue color
from the front cell but keeps (k) the blue color from the right cell. We don’t
care about what it does to the others (?):

?
? ? k

e

?

So any pattern that is gray on the right cell and white on the front one will do.
For instance:

After doing this cut we obtain:

1
2 2 1

2
2

We now look at color 2. For this color we need a pattern that preserves the
right cell and the front cell but changes the top one. So a patten of the form:

?
? ? k

k
e

One possibility is the following cut:

This results in:

3
3 2 1

2
3

Finally, for the next cut we need to preserve the right, front and top cells. We
don’t care about what happens to the others because there is no color 4 in the
final cube.

?
? ? k

k
k
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There is only one cut that does this:

And this gives us the desired cube:

4
4 4 1

2
3

Repeating this exact cut changes all the 4 into 5 as we get our target cube.

5
5 5 1

2
3

Graph

This sequence representation of a graph is described by a path on the graph
that visits every edge at least once by giving the sequence of nodes to visit. We
want to make the sequence as small as possible so, in other words, we want a
path that visits each edge at least once of minimum length.

If the graph is Eulerian then there exists a representation on length |E| + 1
which is obviously optimal. But what can we do if the graph is not Eulerian?
This is exactly the Chinese postman problem (CPP).

By the handshaking lemma there must be an even number of nodes with odd
degree. Hence we can turn the graph into an Eulerian graph by adding paths
between those nodes. Since we want to add a minimum number of edges we
can find which paths to build by computing a minimum cost matching on the
complete graph consisting of the odd degree nodes and having edge costs equal
to the shortest path length between them. The paths can be computed using a
BFS from each odd degree node.

Since the number of odd degree nodes is at most 20 we can compute the match-
ing using dynamic programming. Notice that we do not need an Euler tour,
just and Euler path. Hence we can leave two nodes unmatched.

Check the CP3 book to see how to compute the matching.
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