
Editorial

Problem A

First compute the status of the light when you arrive if you go at maximum
speed. If the light is green then you have to go at that speed because you want
to arrive as soon as possible. If it is red, you can go slower. Compute the first
time at which the light becomes green after that and chose your speed so that
you travel distance d is exactly that time.

Problem B

If we divide the table into squares of size d = gcd(h,w) we notice that the ball
traverses the diagonal of every square before it reaches the first corner. Thus
the total distance is equal to length of each of those diagonals (

√
2d) multiplied

by the total numbers of squares ((h/d) · (w/d)).

So the answer is: dhw
√
2

d2 =
√

2hw
d .

Problem C

This problem can easily be to a weighted interval scheduling problem. Each car
corresponds to an interval from the time it arrives until the time it leaves the
bridge and its cost is the value payed.

We want to select a subset of intervals such that no two intervals properly
intersect and the total cost of the chosen intervals is maximum. This is easily
solvable with dynamic programming.

1

dp(I) = max value for intervals in set I

Given an interval x let c(x) be the set of intervals conflicting with x. Let v(x)
the value value of an interval x. We can write:

dp(I) = max

{
v(x) + dp(I \ c(x)) take interval x

dp(I \ {x}) do not take interval x

Now, this DP formulation is not very good because it contains as many states
as there are subsets of I (2|I|).

We can do better by sorting the intervals by right end x1, x2, . . . , xn. Then it is
easy to see that c(xi) is a continuous range xj , xj + 1, . . . , xi for some xj with
j < i. This xj will be the rightmost interval that does not intersect xi and can
be found in O(log(n)) by doing a binary search. Let’s write j(i) to be the index
of the rightmost interval xj(i) that does not conflict with xi. Then we can write

dp(i) = max value for intervals in set x1, x2, . . . , xi

and

dp(i) = max

{
v(x) + dp(j(i)) take interval xi

dp(i− 1) do not take interval xi

Since each j(i) can be computed in O(log(n)) the total runtime will be O(n log(n)).

Problem D

Build a graph with n + 2 nodes. One node per exercises and one node repre-
senting Bob and another Craig. Link the exercises with an edge with cost equal
to the time it take to combine their solutions if they are not solved by the same
person. Link Bob to each exercise with and edge of cost equal to the time Bob
takes to solve that exercise. Do the same with Craig. The graph in the first
sample input will be:

2

bob

e1

e2

e3

e4

craig

6

5

10

4

4

10

3

8

5

6

2

1

It is not hard to see that there is a one-to-one correspondence between (bob, craig)
cuts in this graph and homework assignments. Let’s see this on an example.
Consider the cut:

bob, e4, e1 craig, e2, e3

Look at the edges crossing the cut (in red):

bob

e1

e2

e3

e4

craig

6

5

10

4

4

10

3

8

5

6

2

1

The cut edges are (bob, e2), (bob, e3), (craig, e1), (craig, e4), (e2, e4) and (e1, e2).
If we assign e2, e3 to bob and e1, e4 to craig the total cost will be exactly the
same as the cost of this cut (notice that we reverse the assignment relative to
the cut).

It is not hard to show that this works in general. So the solution is to compute
the minimum (bob, craig). The exercises that are on the same side of bob in the
cut are assigned to craig and the other to bob.

Problem E

We will pre-compute a data structure that gives for every point, the closest
point. This is a sort of Voronoi diagram for the Manhattan distance. Computing

3

a Voronoi is complicated in general but in this case the problem constraints make
it simpler.

The diagram in this case can be a matrix such that each cell tell which is the
closest store from that point. The following figure shows an example where each
cell is labeled with the color of the closest store.

Computing such a matrix is easy, a simple BFS from the set of stores does the
job. However the coordinates can be very large and the matrix will not fit into
memory. If we look at it carefully, the only part where the matrix is messy is
between all the stores.

4

Outside of the bounding box of the stores (from (minx,miny) to (maxx,maxy))
each query can be projected to the border of that bounding box.

Because we know that dx · dy ≤ 106 our BFS to compute the Voronoi diagram
on the bounding box will run fast enough. Then each query can be answered in
O(1) by either reporting the matrix value if it lies inside the bounding bot or
projecting it onto the border otherwise.

5

