Editorial

In this contest the problems were more or less sorted by difficulty. It is some-
times hard to compare problems because difficulty does not mean the same for
everyone.

It seems the contest was a bit too hard as the best participant solved 3 problems.
I will try to reduce the difficulty for subsequent rounds. Again, it is not always
easy to measure difficulty.

The goal of an editorial is not give the complete details of the solution by rather
to sketch the main ideas. We encourage you to try to solve the problems and
fill in the details on your own after reading this.

You can already submit here: http://domjudge.info.ucl.ac.be.

Problem A

You are given a grid and you need to know if there is a path of length T" between
two points of the grid. Let d be the Manhattan distance between the two points.

Clearly if T' < d then it is impossible as we cannot even reach the target. This
was a detail that some of you forgot and thus got wrong answer.

If T > d we need to be able to waste the remaining 7" — d steps. Every step
that goes away from the target requires another step to get closer again since
we need to end up at the target in the end. This means that we can do it if and
only if the number of excess steps, T' — d, is even.

Problem B

Finding the optimal cost is a classical problem. Since we want to minimize the
product, it is not hard to see that the best we can do it sort times increasingly
and the costs decreasingly and assign the jobs in order.

Now we need to preprocess the data to be able to efficiently answer each query.

From now on we assume that the input data was already sorted sorted (times
on the top from small to big and costs on the bottom from big to small). In


http://domjudge.info.ucl.ac.be

practice you have to map the indexes from the query to the sorted arrays to
make it work.

In this case the optimal solution looks like this (we match ¢ to ©):

Now lets assume that the query asks to match 6 to 3. The it is easy to see that
the best way to do so is the following:

As we can see, before ans after the query region (indexes before 3 and after 6)
remain the same. The others are shifted to the right. It would be to the left if
the top index as smaller than the bottom one.

Therefore we will precompute the left shifted sums of products.

And the right shifted sums of products.

| I



By doing cumulative sums over these sums of products we can answer in O(1)
the value of the sum of products over any given range. Thus we can combine
the left, middle and right parts of the answer in O(1).

We leave the details as exercise. For more about cumulative sums you can read
here:

https://www.geeksforgeeks.org/range-sum-queries-without-updates/

Problem C

The number of cubes hit by a laser shot at (x,y, z) is

x4+ y+z—ged(z,y) — ged(z, 2) — ged(y, 2) + ged(z, y, 2)

The pairwise ged correspond the number of times the beam hits edges of the
cubes and ged(z,y, z) is the number of vertexes hit by the beam.

If you have trouble convincing you of this, start by seeing what happens on a
2D grid. The number of squares hit by a laser shot at (z,y) is z +y — ged(z, y).
2 + y is the number of edges that the beam has to cross to each point (x,y)
but sometimes the beam will hit a grid point so it will cross two at at the same
time, therefore we need to subtract ged(z,y), the number times the beam will
it a grid point.

In short we need to maximize the function

f(@,y,2) =2 +y+ 2 —ged(z,y) — ged(z, 2) — ged(y, 2) + ged(z, y, 2)

It is easy to see that the maximum is f(n —2,n — 1,n).

We leave the details as an exercise but in short first notice that we cannot
have two equal coordinates, say x = y, since otherwise we loose ged(z,y) =
ged(z, ) = x. Thus (n—2,n—1,n) are the largest all different coordinates. With
these we have small pairwise ged’s, ged(n —2,n — 1) = 1, ged(n — 2,n) € {1,2}
and ged(n — 1,m) = 1. The only thing that could be better is to have all of
them equal to 1. In that case we only increase the value by 1. But that means
decreasing one of the coordinates by at least 1 so it is not worth it. Notice that
the triple ged is always smaller than the minimum pairwise ged so we cannot
really gain from there.

Problem D

I forgot to mention in the problem statement that the log is base 2...

We can output any answer that has boat size k < kpn + log(kmin). So if
kmin > 2 then we can use boat size equal to ki + 1.


https://www.geeksforgeeks.org/range-sum-queries-without-updates/

A vertex cover of a graph is a subset of nodes such that when removed, no edges
remain in the graph. Therefore the first trip must contain a vertex cover since
otherwise we would leave a conflict on the left side. This means that k,,;, > ve,
the minimum size vertex cover.

We claim that we can always solve the problem with a boat of size vc+ 1: just
put the vertex cover of size vc on the boat and take the others one by one to
the other side never unloading any vertex from the vertex cover. Then when
everyone is on the right side just drop the vertex cover.

This is a solution with k > k,,;, + 1. This is accepted provided that k,,;, > 2.
If ki, = 1 then log(kmin) = 0 so we need an optimal solution.

It is quite easy to list the graphs that have a solution with k,,;, = 1. There can
be at most two edges both linked the same node. There can be any number of
nodes of degree 0. This means that the graph is either

e all nodes have degree 0 (no edges); or

e a path of size 2 and all other nodes have degree 0; or

e a path of size 3 and all other nodes have degree 0.
Thus you need to first detect whether you are in one of these cases. If so you

solve it with a boat of size 1. Otherwise you compute the vc and performs the
trips as described above.

You need to be careful to not exceed n? trips. This means that for the special
cases mentioned above you really need to make the minimum number of trips
(the most naive solution will do an extra trip).

For you information k,,;, is a well known concept and is called the Alcuin
number of the graph.

Problem E

This problem is about finding about finding a path in a cactus graph.
https://en.wikipedia.org/wiki/Cactus_graph

Each edge of the graph belongs to at most one cycle. Let’s label the cycles from
0 to the number of cycles and then their edges with the same labels.

This can be done using a DFS: every time you find a back edge you can label
the cycle. This costs O(V + E).

https://en.wikipedia.org/wiki/Depth-first_search

Then you can prove that any path from s to ¢ will always visit the set set of
cycles (in the same order). This is because if you can find two paths that visit a


https://en.wikipedia.org/wiki/Cactus_graph
https://en.wikipedia.org/wiki/Depth-first_search

different set of cycles then you can prove that some edge belongs to more than
one cycle.

Therefore you simply compute any path from s to ¢ and look at the sequence
of cycles that are visited. Then you loop over the cycles and for each of them
you can traverse it in two ways. You simply choose the longest one for each of
them and you get the longest path.

Look at the pictures in the problem statement to see what I mean by two ways
of traversing each cycle in case you are confused.



